Archive for 10/28/10

Mesin Motor 4 tak


.

Setiap pengendara motor tentu ingin tunggangannya terawat dengan baik, dan irit bahan bakar seperti sepeda motor 4 tak. Untuk mereka yang menggunakan motor sebagai kendaraan operasional, tentu berharap kendaraannya akan berumur panjang.
Untuk para bikers, sebutan bagi para pengendara motor, merawat kondisi mesin dan atribut motor adalah hal yang wajib. “Setelah jarak tempuh motor mencapai maksimal 3000 km, oli mesin harus diganti,” jelas Deny, mekanik dari bengkel Clinic di Jl. Kerja Bakti, Jakarta Timur.
Nah, ada berbagai macam perawatan dan pemeliharaan yang harus Anda lakukan secara berkala, diantaranya adalah:
1. Periksakan Busi Sepeda Motor
Busi sangat vital bagi kelancaran mesin motor, “Cek businya, seandainya masih layak pakai, dapat dipergunakan kembali. Tapi kalau sudah mencapai 12 ribu km, sebaiknya businya di ganti,” jelas Deny yang lulusan Sekolah teknik Mesin (STM).
Perhatikan pula keadaan kabel koil yang menghubungkan arus listrik ke busi, bila sudah cukup umur, terlihat ada retakkan dan pengerasan di kabel, sebaiknya segera diganti.
2. Cek Filter Karburator
Menurut Deny, filter karburator terbagi dua, yaitu jenis basah dan kering. Model filter basah, dibersihkan dengan menggunakan bensin lalu dilumasi oli setelahnya. “Umumnya motor keluaran tahun 1990-2000-an, menggunakan model filter basah seperti ini,” tambahnya.
Sedang motor keluaran tahun 2000 ke atas, biasanya menggunakan tipe kering. Cara perawatannya cukup mudah, yaitu tinggal disemprot dengan kompresor. “Tapi model ini juga memiliki kelemahan, yaitu wajib diganti setiap mencapai 25 ribu km dan tidak boleh terkena oli atau minyak,” papar pria berusia 23 tahun ini.
Filter oli pun harus diperhatikan, “Motor tahun 90-an tidak menggunakan filter oli, tetapi untuk jenis motor tahun 2000 ke atas, menggunakan filter oli dan wajib di ganti setiap kurang lebih 10 ribu km.”
3. Periksa Setelan Rantai dan Gir
Jangan biarkan rantai terlalu kendor atau terlalu kencang, “Bila rantainya kendor, cukup disetel. Tapi kalau kering, cukup diolesi dengan oli khusus rantai (chain lube). Biasanya, rantai harus diganti kalau sudah mencapai 25 ribu hingga 35 ribu km.”
Penghobi motor sejak SD ini, juga menyarankan Anda untuk tidak lupa memeriksa kondisi gir. “Jika sudah tajam, lekas ganti, karena kalau tidak rantai dapat putus secara tiba-tiba,” kata Deny.
Khusus motor jenis Matic yang menggunakan V/Belt, rantainya tidak dapat disetel dan wajib diganti setiap 25 ribu km. Bila rantai dan gir sudah beres, sekalian periksa kampas rem depan dan belakang, ganti bila sudah terlihat menipis.
4. Membersihkan Karburator
Bersihkan bagian pilot dan main jet motor. Untuk menyetel angin motor tipe manual (buatan tahun 90 hingga 2000-an), tutup baut setelan angin dan buka perlahan berlawanan arah jarum jam, maksimal 1/2 putaran.
Untuk tipe Vakum, yaitu motor keluaran 2000 ke atas, juga sama yaitu dengan membersihkan pilot dan main jet. “Bedanya hanya disetelan angin, untuk tipe ini, maksimal putarannya 2 ½ berlawanan arah jarum jam,” paparnya. Untuk penyetelan klep motor 4 tak, adalah setiap 12 ribu hingga 18 ribu km.
5. Cek Kondisi Aki
Motor-motor buatan tahun 2000 ke atas, umumnya telah menggunakan jenis aki kering yang tak memerlukan perawatan khusus (non maintenance). “Tapi setiap tiga tahun, maksimal, wajib di ganti,” terang Deny.
“Sedangkan motor yang menggunakan aki basah, perlu di cek setiap 10 ribu km. Bila air akinya kering, segera diisi,” lanjutnya.
Ciri-ciri aki basah yang kondisi sudah lemah adalah, motor tidak mampu di starter. Deny tidak menyarankan untuk memaksa motor menyala dengan cara di dorong, karena ini dapat merusak gigi transmisi.
6. Panaskan Mesin Motor
Panaskan mesin motor sebelum dijalankan, tidak perlu lama-lama, cukup 1-2 menit saja. Fungsinya, menurut Deny, agar sirkulasi oli dapat melumasi seluruh bagian dalam mesin yang bergerak. “Tidak perlu lama-lama memanaskannya, karena akan membuat pipa knalpot menguning.”
7. Gunakan Sparepart (Suku Cadang) Asli
Meski suku cadang asli sedikit lebih mahal, namun Anda akan merasa puas karena lebih tahan lama dan kualitasnya pun terjamin di banding yang palsu.
Selain beberapa hal di atas, Deny juga mengingatkan para bikers untuk selalu memeriksa tekanan ban Anda. “Tekanannya jangan terlalu keras dan jangan kurang, karena dapat mengakibatkan kembang ban motor menjadi rusak.”
Perawatan di atas sebenarnya dapat Anda lakukan sendiri, namun bila tak punya waktu atau kurang mengerti caranya, carilah bengkel tempat servis langganan atau yang dapat Anda percayai. Jika Anda bersahabat dan rajin merawat kendaraan, maka motor kesayangan Anda pun akan selalu tampil prima.

Sistem suspensi (kendaraan)


.

Suspensi adalah kumpulan komponen tertentu yang berfungsi meredam kejutan, getaran yang terjadi pada kendaraan akibat permukaan jalan yang tidak rata yang dapat meningkatkan kenyamanan berkendara dan pengendalian kendaraan. Sistem suspensi kendaraan terletak diantara bodi (kerangka) dengan roda. Ada dua jenis utama suspensi yaitu :
1. Sistem suspensi dependen atau sistem suspensi poros kaku (rigid)
2. Sistem suspensi independen atau sistem suspensi bebas.
Daftar isi
[sembunyikan]
* 1 Sistem suspensi dependen
* 2 Sistem suspensi independen
* 3 Komponen utama
o 3.1 Pegas
o 3.2 Peredam kejut
o 3.3 Lengan suspensi
* 4 Lihat pula
* 5 Pranala luar
[sunting] Sistem suspensi dependen
Roda dalam satu poros dihubungkan dengan poros kaku (rigid), poros kaku tersebut dihubungkan ke bodi dengan menggunakan pegas, peredam kejut dan lengan kontrol (control arm)
Awalnya semua kendaraan menggunakan sistem ini. Sampai sekarang sebagian besar kendaraan berat seperti truck, masih menggunakan sistem ini, sedangkan kendaraan niaga umumnya menggunakan sistem ini pada roda belakang.
[sunting] Sistem suspensi independen
Antara roda dalam satu poros tidak terhubung secara langsung, masing-masing roda (roda kiri dan kanan) terhubung ke bodi atau rangka dengan lengan suspensi (suspension arm), pegas dan peredam kejut. Goncangan atau getaran pada salah satu roda tidak mempengaruhi roda yang lain.
Umumnya kendaraan penumpang menggunakan sistem ini pada semua poros rodanya, sedangkan kendaraan niaga umumnya menggunakan sistem ini pada roda depan sedangkan pada poros roda belakang menggunakan sistem suspensi dependen pada poros roda belakang. Tipe MacPherson strut dan double-wishbone termasuk dalam jenis sistem ini.
[sunting] Komponen utama
[sunting] Pegas
!Artikel utama untuk bagian ini adalah: Pegas
Dengan sifat pegas yang elastis, pegas berfungsi untuk menerima getaran atau goncangan roda akibat dari kondisi jalan yang dilalui dengan tujuan agar getaran atau goncangan dari roda tidak menyalur ke bodi atau rangka kendaraan.
Beberapa tipe pegas yang digunakan pada sistem suspensi :
* Pegas ulir (coil spring), dikenal juga dengan nama ‘per keong’, jenis yang digunakan adalah pegas ulir tekan atau pegas ulir untuk menerima beban tekan.
* Pegas daun (leaf spring), umumnya digunakan pada kendaraan berat atau niaga dengan sistem suspensi dependen.
* Pegas puntir atau dikenal dengan nama pegas batang torsi (torsion bar spring), umumnya digunakan pada kendaraan dengan beban tidak terlalu berat.
[sunting] Peredam kejut
!Artikel utama untuk bagian ini adalah: Peredam kejut
Peredam kejut berfungsi untuk meredam beban kejut atau goncangan atau getaran yang diterima pegas.
[sunting] Lengan suspensi
Lengan suspensi atau suspension arm hanya terdapat pada sistem suspensi dependen, terpasang pada bodi atau rangka kendaraan, berfungsi untuk memegang rangka roda kendaraan. Pergerakan yang komplek pada roda agar dapat sinkron dengan pergerakan pergerakan lengan suspensi maka terdapat ball joint pada pengikatan lengan suspensi dengan rangka roda.
[sunting] Lihat pula
* Peredam kejut
* Mobil
* Otomotif
[sunting] Pranala luar
* The Suspension Bible
* Bose Suspension System
* Kinetic news article
* Air Ride Suspension information
* Benefits of Adding Air Springs to a vehicle’s suspension
* Camaro Suspension Modification
* Car Hydraulics

EFI – Electronic Fuel Injection pada Motor


.

Berbagai macam cara dan usaha yang dilakukan untuk mengurangi kadar gas buang beracun yang dihasilkan oleh mesin-mesin kendaraan bermotor seperti penggunaan BBM bebas timbal, penggunaan katalis pada saluran gas buang, dll.
Sebagaimana mesin 2 langkah yang harus digantikan oleh mesin 4 langkah, sistem karburasi manual akhirnya juga akan digantikan oleh sistem karburasi digital.
Sistem injeksi bahan bakar elektronik (karburasi digital) sudah mulai diterapkan pada mesin sepedamotor, perlahan tapi pasti akan menggantikan sistem yang sudah lama bertahan yaitu karburator (karburasi manual).
Karena mesin sepedamotor merupakan kombinasi reaksi kimia dan fisika untuk menghasilkan tenaga, maka kita kembali ke teori dasar kimia bahwa reaksi pembakaran BBM dengan O2 yang sempurna adalah:
14,7:1 = 14,7 bagian O2 (oksigen) berbanding 1 bagian BBM
Teori perbandingan berdasarkan berat jenis unsur, pada prakteknya perbandingan diatas (AFR – Air Fuel Ratio) diubah untuk menghasilkan tenaga yang lebih besar atau konsumsi BBM yang ekonomis.
Karburator juga mempunyai tujuan yang sama yaitu mencapai kondisi perbandingan sesuai teori kimia diatas namun dilakukan secara manual. Karburator cenderung diatur untuk kondisi rata-rata dimana sepedamotor digunakan sehingga hasilnya cenderung kearah campuran BBM yang lebih banyak dari kebutuhan mesin sesungguhnya.
Untuk EFI karena diatur secara digital maka setiap ada perubahan kondisi penggunaan sepedamotor ECU akan mengatur supaya kondisi AFR ideal tetap dapat dicapai.
Contohnya: Pada sistem Karburator ada perbedaan tenaga jika sepedamotor digunakan siang hari dibandingkan malam hari, hal ini karena kepadatan oksigen pada volume yang sama berbeda, singkatnya jumlah O2 berubah pasokkan BBM tetap (ukuran jet tidak berubah).
Hal ini tidak terjadi pada sistem EFI karena adanya sensor suhu udara (Inlet Air Temperature) maka saat kondisi kepadatan O2 berubah, pasokkan BBM pun disesuaikan (waktu buka injector ditambah atau dikurangi). Jadi sepedamotor yang menggunakan EFI digunakan siang atau malam tetap optimum alias tenaga tetap sama.
Perbedaan utama Karburator dibandingkan EFI adalah:
Karburator EFI
BBM dihisap oleh mesin BBM diinjeksikan/disemprotkan ke dalam mesin
Pengapian Terpisah Sistem Pengapian menyatu
Komponen-komponen dasar EFI
Setiap jenis atau model sepedamotor mempunyai desain masing-masing namun secara garis besar terdapat komponen-komponen berikut.
ECU – Electrical Control Unit
Pusat pengolah data kondisi penggunaan mesin, mendapat masukkan/input dari sensor-sensor mengolahnya kemudian memberi keluaran/output untuk saat dan jumlah injeksi, saat pengapian.
Fuel Pump
Menghasilkan tekanan BBM yang siap diinjeksikan.
Pressure Regulator
Mengatur kondisi tekanan BBM selalu tetap (55~60psi).
Temperature Sensor
Memberi masukan ke ECU kondisi suhu mesin, kondisi mesin dingin membutuhkan BBM lebih banyak.
Inlet Air Temperature Sensor
Memberi masukan ke ECU kondisi suhu udara yang akan masuk ke mesin, udara dingin O2 lebih padat, membutuhkan BBM lebih banyak.
Inlet Air Pressure Sensor
Memberi masukan ke ECU kondisi tekanan udara yang akan masuk ke mesin, udara bertekanan (pada tipe sepedamotor ini hulu saluran masuk ada diantara dua lampu depan) O2 lebih padat, membutuhkan BBM lebih banyak.
Atmospheric Pressure Sensor memberi masukan ke ECU kondisi tekanan udara lingkungan sekitar sepedamotor, pada dataran rendah (pantai) O2 lebih padat, membutuhkan BBM lebih banyak.
Crankshaft Sensor
Memberi masukan ke ECU posisi dan kecepatan putaran mesin, putaran tinggi membutuhkan buka INJECTOR yang lebih cepat.
Camshaft Sensor
Memberi masukan ke ECU posisi langkah mesin, hanya langkah hisap yang membutuhkan buka INJECTOR.
Throttle Sensor
Memberi masukan ke ECU posisi dan besarnya bukaan aliran udara, bukaan besar membutuhkan buka INJECTOR yang lebih lama.
Fuel Injector / Injector
Gerbang akhir dari BBM yang bertekanan, fungsi utama menyemprotkan BBM ke dalam mesin, membuka dan menutup berdasarkan perintah dari ECU.
Speed Sensor
Memberi masukan ke ECU kondisi kecepatan sepedamotor, memainkan gas di lampu merah dibanding kecepatan 90km/jam, buka INJECTOR berbeda.
Vehicle-down Sensor
Memberi masukan ke ECU kondisi sepedamotor, jika motor terjatuh dengan kondisi mesin hidup maka ECU akan menghentikan kerja FUEL PUMP, IGNITION, INJECTOR, untuk keamanan dan keselamatan.
Electronic Fuel Injection memang lebih unggul dibanding karburator, karena dapat menyesuaikan takaran BBM sesuai kebutuhan mesin standar.
ECU diprogram untuk kondisi mesin standar sesuai model sepedamotor, di dalam ECU terdapat tabel BBM yang akan dikirim melalui Injector sesuai kondisi mesin standar.
Jika ada perubahan dari kondisi standar misalnya filter udara diganti atau dilepas, walaupun ada pengukur tekanan udara (inlet air pressure sensor) pasokkan BBM hanya berubah sedikit, akhirnya sepedamotor akan berjalan tidak normal karena O2 terlalu banyak (lean mixture).
Tabel ECU standar biasanya tidak dapat dirubah, karena tujuan utama EFI adalah pengurangan kadar emisi gas buang beracun.
Untuk mesin modifikasi memerlukan modifikasi tabel dalam ECU, hal ini dapat dilakukan dengan:
1. Software yang dapat masuk ke dalam memory ECU – hanya dimiliki oleh ATPM atau dealer.
2. Piggyback alat tambahan diluar ECU – bekerja dengan cara memanipulasi sinyal yang dikirim ke Injector untuk membuka lebih lama.
3. Tukar ECU aftermarket yang dapat diprogram tabel memory-nya, sesuai modifikasi, sesuai kondisi sirkuit.

modifikasi motor 4 tak


.

Modifikasi Motor 4 Tak

Maret 30, 2010 oleh adjiebhonder
Untuk meningkatkan daya atau power mesin motor standart yang biasa disebut tune up, perlu diusahakan perubahan-perubahan pada beberapa hal :
1. Meningkatkan / menaikkan perbandingan kompresi.
2. Memperbaiki porting IN maupun EX supaya pemasukan bahan bakar menjadi lancar dan baik.
3. Merubah durasi, Lift noken as.
4. Mengubah pengapian (apabila dalam perlombaan diperbolehkan).
5. Mengubah rasio dengan Close Rasio.
6. Setting karburator.
KOMPRESI
Meningkatkan perbandingan kompresi (Compretion Ratio = CR) adalah cara awal yang ditempuh oleh para mekanik untuk meningkatkan power mesin. Namun demikian untuk meningkatkan perbandingan kompresi perlu diperhatikan beberapa faktor, antara lain :
1. Bahan bakar yang digunakan.
2. Kwalitas piston yang digunakan.
CARA MENAIKKAN KOMPRESI :
1. Mengganti piston dengan model racing.
2. Mendekatkan deck clearance.
3. Membubut Head.
4. Mengelas Head.
5. Membubut Blok dan Piston.
CARA MENURUNKAN KOMPRESI :
1. Merimer dome pada head.
2. Memperdalam coakan klep pada piston.
3. Membubut piston.
KEUNTUNGAN MENGGUNAKAN KOMPRESI TINGGI :
1. Power mesin meningkat.
2. Final gear menjadi berat.
3. Power mesin terasa dari putaran bawah sampai atas.
KERUGIAN MENGGUNAKAN KOMPRESI TINGGI :
1. Mesin menjadi cepat panas.
2. Engine break menjadi besar dan kasar.
3. Apabila perhitungan kompresi tidak tepat, sering terjadi detonasi.
Untuk mengetahui / menghitung perbandingan kompresi (CR) dari satu mesin, kita perlu mengetahui dulu volume silinder yang akan dikerjakan.
CONTOH PADA MESIN JUPITER Z O/S 100
Bore atau D : 52 mm = 5,2 Cm
Stroke 54 mm = 5,4 Cm
= 0,785 x 5,22 X 5,42
= 114,62 cc
≈ 115 cc
CONTOH PADA JUPITER Z O/S 100
Volume ruang bakar diukur dengan buret lewat busi adalah 14,55 c
Jadi Volume ruang bakar 14,55 cc – 0,7 cc = 13,85
( 0,7 cc adalah Volume Ruang Busi )
Cara menentukan berapa cc isi ruang bakar yang harus kita pakai pada perbandingan kompresi yang sudah kita tentukan.
Misalnya kita menginginkan perbandingan kompresi 1 : 14 berapa volume ruang bakarnya ?
Berarti apabila kita menginginkan perbandingan kompresi 1 : 14, isi ruang bakar harus 8,84cc.
PORTING
Maksud dari mengubah porting adalah usaha untuk meningkatkan atau memperbaiki efisiensi volumetric dengan mengoptimalkan aliran gas ke dalam ruang bakar.
Ada 3 faktor yang menentukan besarnya tenaga pada sebuah mesin :
1. Efisiensi mesin
yaitu seberapa dorongan pada piston yang dihasilkan oleh gaya putaran fly wheel.
2. Efisiensi thermal (panas)
yaitu seberapa banyak bahan bakar yang harus dibakar/ dipanaskan dalam silinder untuk mendorong piston turun menuju TMB secara efisien.
3. Efisiensi volumetric
yaitu membuat saluran / ukuran yang tepat untuk memompa gas secara optimal.
Macam Macam Bentuk Porting
Dalam modifikasi, Head usahakan agar tidak mendapat hambatan apapun, misalnya lubang intake dengan lubang manifold atas juga harus sama dengan joint / karet manifold, usahakan dalam merimer supaya tidak ada ruang yang menyudut.
NOKEN AS
Di antara komponen pada motor yang paling utama untuk meningkatkan kecepatan mesin adalah memodifikasi camshaft / cam/ noken as. Noken as berfungsi mengatur buka / tutup klep yang dibutuhkan untuk mengatur bahan bakar melewati klep in dan membuang melewati klep ex secara selaras.
CARA KERJA NOKEN AS SEBAGAI BERIKUT :
1. Apabila titik A menyentuh pelatuk, maka katup mulai terangkat dan akan terbuka penuh setelah mencapai puncak tonjolan ( titik B ).
2. Setelah melewati puncak, katup akan turun kembali dan tertutup rapat setelah titik C.
3. Dari A kemudian naik ke C dan kemudian kembali ke B disebut durasi noken as.
4. Tinggi tonjolan menentukan Lift Max.
5. Bentuk permukaan profil tonjolan menentukan percepatan penutupan dan pembukaan katup oleh bentuk permukaan profil tonjolannya.
LIFT MAX
Cara menentukan Lift Max pada motor balap :
Secara teori untuk motor standart, Lift Max adalah 23% dari diameter klep in. Kemudian untuk motor balap dengan sirkuit yang tidak begitu panjang, Lift Max sekitar 29% – 31% dari diameter klep in. Untuk balap dengan sirkuit panjang, Lift Max dapat dibikin sampai dengan 35% dari diameter klep.
Motorcycle
Cara menghitung durasi ada beberapa cara :
1. Durasi dihitung setelah klep mengangkat 1,27mm pada setelan klep 0 (zerro).
2. Durasi dihitung pada saat klep mulai membuka pada setelan klep 0,10 mm.
Untuk mempermudah pembuatan, kita akan menggunakan cara yang ke dua. Sebelum kita ingin menentukan angka durasi, harus kita ketahui dulu berapa LC (lobe center) pada noken as yang akan kita modifikasi.
Untuk mengetahui LC, kita harus memasang noken as pada mesin dan mengukur dengan busur derajat yang dipasang pada kruk as sebelah kiri / magnet.
Sebagai contoh :
LC PADA JUPITER Z : 103
Kita menginginkan durasi 310 derajat.
Berapa derajat in open dan berapa derajat in close ?
Perhitungan Untuk Mencari in close :
310 – 180 – 52 = 78
BERARTI UNTUK LC 103 JIKA KITA MENGINGINKAN DURASI 301 ANGKA DURASINYA ADALAH :
IN OPEN 52 SEBELUM TMA
IN CLOSE 78 SETELAH TMB
Untuk motor balap durasi idealnya adalah 29 – 33.
Untuk lift max motor balap durasi idealnya adalah :
7,5 mm – 8,3 mm
Keuntungan menggunakan lift tinggi dan durasi besar :
* Tenaga mesin menjadi sangat besar
* Mesin sangat bagus di putaran atas
Kerugian menggunakan lift tinggi dan durasi besar :
* Pada putaran bawah kurang bagus
* Per klep menjadi tidak awet
* Klep floating / melayang apabila pir klep tidak kuat
* Coakan klep pada piston harus dalam
CARA MENGGERINDA CAM
* Bagian Base Circle digerinda kurang lebih 18 sampai ketemu lift yang diinginkan
* Kemudian diikuti dengan menggerinda bagian ram untuk menentukan durasi
* Menggerinda bagian flank untuk menentukan lift O/L dan membentuk profil
* Usahakan dalam menggerinda sebuah kem dengan rata dan halus untuk menjaga agar rocker arm tetap awet dan mengurangi floating.
IGNITION / PENGAPIAN
Bagian pada mesin berfungsi untuk membakar campuran bahan bakar dan udara yang di kompresi oleh piston, sebelum piston mencapai TMA.
Sumber arus listrik untuk menghasilkan loncatan api bisa berasal dari spul atau langsung aki.
Sumber listrik yang dihasilkan langsung dari sepul sering disebut pengapian AC, dan langsung dari aki sering disebut pengapian DC.
Pengapian AC
Keuntungan menggunakan sistem AC :
* Sistem listrik langsung sesuai dengan putaran mesin.
* Tidak perlu menggunakan aki
Kerugian menggunakan sistem AC :
* Putaran mesin sedikit berkurang, karena gaya magnet yang ada
Pengapian DC
Keuntungan menggunakan sistem DC / Total Lost :
* Tidak perlu menggunakan magnet
* Berat rotor bisa dibuat sesuai keinginan kita (bisa sangat ringan)
Kerugian menggunakan sistem DC / Total Lost :
* Harus sering mengisi ulang (recharging) aki (accu)
* Resiko terjadi aki tekor
Perbedaan waktu pengapian standart dan yang sering digunakan untuk balap:
Pengapian untuk motor standart
* Pada RPM rendah (1.000 – 3.000 RPM) : loncatan api pada 8 – 15 sebelum TMA
* Pada RPM tengah tinggi (4.000 ke atas) :loncatan api pada 25 – 30 sebelum TMA
* Api busi tidak besar dibanding pengapian balap
Pengapian untuk motor balap
* Pada RPM rendah (1.000 – 3.000 RPM) : loncatan api pada 20 – 30 sebelum TMA
* Pada RPM tengah sampai tinggi ( 4.000 ke atas) : loncatan api pada 35 – 42 sebelum TMA
* Api busi besar
Macam macam jenis CDI
1. single map
cdi yang terdiri hanya dengan 1 map/kurve
contoh : cdi bawaan motor, cdi brt dual band
2. multi map
cdi yang terdiri lebih dari 1map / kurve yang dapat kita pilih sendiri dengan beberapa click.
contoh : cdi rextor adjustable, cdi brt smart click
3. cdi programable
cdi yang bisa diatur kurve/ grafik pengapian menurut keinginan kita, yang disesuaikan dengan karakter mesin yang dibutuhkan.
contoh : rextor programable, cdi vortec, cdi brt remmote.

Bagian-bagian pada mesin bubut


.


Bagian-bagian terpenting pada mesin bubut :

1.Kepala tetap dengan kotak roda gigi
2.Eretan melintang
3.Kotak roda gigi ulir
4.Pemutar eretan melintang
5.Pelat cekam
6.Eretan atas
7.Alas
8.Pemutar eretan atas
9.Sumbu pembawa untuk ulir
10.Pempat pahat
11.Sumbu pembawa untuk pemotongan
12.Kepala lepas
13.Eretan memanjang
14.Pemutar kepala atas.
15.Roda pemutar eretan

2.1.1 Kolet

Kolet adalah alat yang presisi sekali dan sudah dikeraskan yang berfungsi sebagai pemegang benda-benda kerja bulat dan teliti.
Rumah kolet dan lolet itu sendiri harus bersih sebelum digunakan.
Selama bekerja dengan kolet, cincin pengikat harus dipasang pada leher poros.
Kolet yang cocok harus dipilih sesuaidengan diameter benda kerja.
Diameter benda kerja tidak akan pernah dilebihkecilkan daripada 0,10 mm dari diameter kolet.
Jika benda kerja yang diameternya tidak cocok, maka kolet akan rusak.
Jika kita mempunyai kolet yang tidak cocok untuk benda kerja, maka benda kerja dijepit dengan pelat cekam.

3. Gerakan-gerakan dalam membubut

3.1 Gerakan berputar

Kecepatan putar benda kerja digerakkan pada pahat, dan disebut kecepatan potong.

3.2 Gerakan memanjang

Jika pemotongan itu arahnya sejajar dengan sumbu benda kerja, gerakan ini disebut gerakan memanjang atau pemakanan.

3.3 Gerakan melintang

Jika pemotongan itu arahnya tegak lurus terhadap sumbu benda kerja, maka disebut gerakan melintang atau pemotongan permukaan (facing).


4. Perputaran dan Pemakaian dalam membubut

Kecepatan potong dipengaruhi oleh faktor-faktor sebagai berikut :

* ukuran bahan yang dikerjakan
* ukuran bagian tatal yang terpotong (dalamnya pemotongan x kecepatan pemakanan)
* tingkat kehalusan yang diinginkan
* bahan pahat yang digunakan
* bentuk pahat
* pencekaman/penjepitan benda kerja
* macam dan keadaan mesin bubut

Pada pemotongan kasar harus digunakan putaran mesin yang rendah (lambat) dan kecepatan pemakanan yang besar (cepat) maka hasilnya akan baik.

Pada pemotongan dengan tingkat penyelesaian halus digunakan putaran mesin yang tinggi dan kecepatan pemakanan yang lambat.

5. Kecepatan potong

Kecepatan putar benda kerja ditunjukkan pada suatu titik yang berputar dalam satuan waktu.

Jika benda kerja dengan garis tengah d1 membuat 1 putaran tiap menit, maka panjang tatal (beram) yang terpotong dalam 1 menit adalah d x p = keliling.

Jika benda kerja berputar lebih dari 1 putaran dalam 1 menit, misalnya n putaran, maka panjang tatal yang terpotong dalam 1 menit adalah =

d x p x n.

Panjang tatal ini diukur dalam satuan meter tiap menit dan disebut dengan kecepatan potong.

Makin besar garis tengah benda kerja, maka makin panjang perbandingan tatal yang dibentuk. Kita liha, bahwa kecepatan potong itu dipengaruhi langsung oleh besarnya garis tengah benda kerja dan banyaknya putaran tiap menit.

Banyaknya putaran tiap menit = r.p.m (rotasi per menit)

Pada gambar-gambar teknik, ukuran garis tengah itu dinyatakan dalam mm, tetapi kecepatan potong dalam membubut dinyatakan dalam m/menit. Olehnya itu kita harus membaginya dengan 1000 untuk memperoleh satuan meter.

maka putaran didapatkan dengan rumus :

Kecepatan potong ini dipersiapkan untuk pemotongan secara terus menerus selama 1 jam atau terputus-putus degnan jumlah waktu 1 jam tanpa mempertajam (mengasah) pahat potongnya.

Waktu 1 jam ini relatif, karena kadang-kadang kurang, kadang-kadang lebih dari 1 jam (secara praktis).

Contoh : Bahan yang akan dikerjakan adalah St.37 dengan kecepatan potong = 20-25 m/menit ; V = 20 m/menit, artinya bahan ini dikerjakan dengan pahat potong HSS yang dipersiapkan untuk pemotongan secara terus menerus selama 1 jam atau terputus-putus dengan jumlah waktu 1 jam, tanpa mengasah pahatnya kembali.

Semakin naik kecepatan potong (untuk bahan yang sama), maka semakin berkurang umur pahatnya, dan semakin turun kecepatan potongnya maka semakin bertambah umurnya tetapi permukaan benda kerja kasar (perhatikan grafik)

Perlu diingat :

Untuk mengerjakan benda kerja di mesin bubut, tidak hanya kecepatan potong saja yang mempengaruhi, tetapi harus diperhatikan kecepatan pemakanan dan sudut-sudut pahatnya harus tepat untuk bahan yang dikerjakan serta proses pendinginannya (air pendingin).

6. Pahat bubut

Berdasarkan arah pemakanannya, pahat bubut terbagi atas :

- pahat kanan, bila pahat dipegang pada permukaannya menghadap pekerja dengan ujung menunjuk ke bawah dan ujung potong berada di sebelah kanan atau memotong dari arah kanan ke kiri

- pahat kiri, memotong dari arah kiri ke kanan


Berdasarkan bentuk dan penggunaannya, pahat bubut terbagi atas :

- pahat kasar

- pahat halus (penyelesaian)

- pahat sisi

- pahat potong

- pahat alur

- pahat ulir (ulir luar dan dalam)

Berdasarkan kedudukan dari bentuk kepala potongnya terhadap poros dari pahat, maka pahat bubut terbagi atas :
6.1 Gambar Penggunaan/Pemakaian Pahat-pahat Bubut

6.2 Sudut-sudut pahat bubut

Sudut-sudut pahat bubut tergantung dari bahan benda kerja dan bahan pahat itu sendiri.

Pahat-pahat tersebut mungkin dibuat dari baja perkakas, baja kecepatan tinggi atau carbide. Pahat yang terbuat dari baja kecepatan tinggi sangat keras (liat) dan tahan panas sampai 600oC. Pahat jenis ini umum digunakan karena dapat melayani hampir semua keperluan.

Pahat-pahat bubut mempunyai kesamaan patokan bentuk seperti pada pahat-pahat lainnya, misalnya pada bentuk bidang baji.

6.3 Sudut-sudut pahat dari bahan baja kecepatan tinggi

Untuk kuningan, perunggu, bahan yang rapuh dan keras.

Untuk bahan lunak dan aluminium murni.

Untuk perunggu liat dan lunak

Untuk baja tuang yang berkualitas 34 - 50 kg/mm2

Untuk baja tuang yang berkualitas 50 - 70 kg/mm2

Untuk baja tuang yang berkualitas lebih dari 70 kg/mm2, seperti kuningan merah dan perunggu

6.4 Mengatur letak tinggi pahat bubut

Letak ujung sisi pemotong pahat harus disesuaikan tepat pada gerakan sumbu benda kerja.

Jika letak pahat di atas sumbu, maka garis sumbu dan sudut tatal akan membuat sudut lebih besar dan sudut bebasnya berkurang.

Akibatnya pahat akan melentur dan sisi depan bagian bawah akan masuk lebih dalam pada benda kerja.

Jika letak pahat di bawah sumbu, maka besarnya sudut antara garis sumbu dan sudut tatal akan berkurang, dan sudut bebasnya menjadi besar.

Kedudukan pahat yang demikian akan mengakibatkan benda kerja rusak dan terangkat.

Untuk menghindari getaran pada pahat, maka pahat harus diikat sependek mungkin pada tempat pahat.

Mengatur tinggi rendahnya pahat ialah dengan keping baja yang berbentuk cekung. Kedudukan pahat harus rata, sejajar dengan tempat pahat.

7. Ketirusan

Ketirusan digunakan untuk bermacam-macam keguanaan di bengkel, misalnya untuk pengikatan dan sealing. Pada penggunaan yang umum ketirusan ini sudah dinormalisasikan.

Bentuk tirusnya dapat dibuat di mesin bubut dengan 3 perbedaan cara :

1. Membubut tirus dengan eretan atas
2. Membubut tirus dengan menggerakkan kepala lepas
3. Membubut tirus dengan perlengkapan pembubutan tirus

7.1 Mengatur eretan atas dengan skala derajat

Eretan atas harus diatur searah dengan arah ketirusan yang akan dibuat. Eretan atas digerakkan dari posisi nol pada skala sampai menunjukkan setengah dari sudut ketirusan (a/2) dan dikencangkan dengan baut.

7.2 Mengatur eretan atas dengan pemeriksa tirus

Pemeriksa tirus dapat digunakan sebagai bahan dasar pengaturan eretan atas.

Dial indicator ditempatkan pada ereta atas dan ujung dial disentuhkan pada sepanjang sisi pemeriksa tirus.

Pengaturan yang benar adalah bila dialnya tidak menunjukkan perbedaan.

7.3 Mengatur sudut

Untuk operasi pembubutan, pengaturan sudutnya adalah sudut dari kemiringan atau setengah dari sudut ketirusannya (a/2).

Sudut (a/2) adalah = tg (a/2) =


jenis macam-macam mesin produksi


.


BIDANG MESIN PRODUK
Mesin produksi atau juga mesin perkakas merupakan mesin yana digunakan untuk membuat atau memproduksi barang yang pada umumnya digunakan di industry dan sekolah.yang digunakan disekolah pada umumnya untuk latihan.ada pula jenis mesin yang digunakan disekolah diantarany:
1. Mesin Fris





Standar ini menetapkan istilah yang ada hubungannya dengan pisau fris untuk memberikan pengertian dasar tentang proses, konstruksi, bentuk dan kerja pemotongan. Istilah dalam standar yang meliputi proses pengefrisan, pisau fris berdasarkan karakteristik dan klasifikasi tangkainya, disajikan dalam bentuk tabel.sin fris(milling)


2. mesin bubut




Mesin BubutBubut merupakan suatu proses pemakanan benda kerja yang sayatannya dilakukan dengan cara memutar benda kerja kemudian dikenakan pada pahat yang digerakkan secara translasi sejajar dengan sumbu putar dari benda kerja. Gerakan putar dari benda kerja disebut gerak potong relatif dan gerakkan translasi dari pahat disebut gerak umpan (feeding).Dengan mengatur perbandingan kecepatan rotasi benda kerja dan kecepatan translasi pahat maka akan diperoleh berbagai macam ulir dengan ukuran kisar yang berbeda. Hal ini dapat dilakukan dengna jalan menukar roda gigi translasi (change gears) yang menghubungkan poros spindel dengan poros ulir (lead screw).Roda gigi penukar disediakan secara khusus untuk memenuhi keperluan pembuatan ulir. Jumlah gigi pada masing-masing roda gigi penukar bervariasi besarnya mulai dari jumlah 15 sampai dengan jumlah gigi maksimum 127. roda gigi penukar dengan jumlah 127 mempunyai ke khususan karena digunakan untuk monversi dari ulir metrik ke ulir inchi.

3. mesin scrap

Scarp merupakan proses pemakanan benda kerja yang sayatannya dilakukan oleh badan mesin (ram) yang meluncut bolak-balik pada Gerak potong pahat pada benda kerja merupakan gerakan lurus translasi. Dalam hal ini benda kerja dalam keadaan diam dan pahat bergerak lurus translasi. Pada saat pahat melakukan gerak balik, benda kerja juga melakukan gerak umpan (feeding). Sehingga punggung pahat akan tersangkut pada benda kerja yang sedang bergerak tersebut. Untuk menghindari gangguan ini, pangkal dudukan pahat diberi engsel sehingga punggung pahat dapat berayun pada waktu balik menyentuh benda kerja.

pengenalan mesin bubut


.

Mesin bubut

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Mesin bubut tahun 1911 menunjukkan bagian-bagiannya.
Mesin bubut kecil
Mesin Bubut adalah suatu Mesin perkakas yang digunakan untuk memotong benda yang diputar. Bubut sendiri merupakan suatu proses pemakanan benda kerja yang sayatannya dilakukan dengan cara memutar benda kerja kemudian dikenakan pada pahat yang digerakkan secara translasi sejajar dengan sumbu putar dari benda kerja. Gerakan putar dari benda kerja disebut gerak potong relatif dan gerakkan translasi dari pahat disebut gerak umpan.
Dengan mengatur perbandingan kecepatan rotasi benda kerja dan kecepatan translasi pahat maka akan diperoleh berbagai macam ulir dengan ukuran kisar yang berbeda. Hal ini dapat dilakukan dengan jalan menukar roda gigi translasi yang menghubungkan poros spindel dengan poros ulir.
Roda gigi penukar disediakan secara khusus untuk memenuhi keperluan pembuatan ulir. Jumlah gigi pada masing-masing roda gigi penukar bervariasi besarnya mulai dari jumlah 15 sampai dengan jumlah gigi maksimum 127. Roda gigi penukar dengan jumlah 127 mempunyai kekhususan karena digunakan untuk konversi dari ulir metrik ke ulir inci.

[sunting] Prinsip kerja mesin bubut

Mesin bubut yang menggunakan sabuk di Hagley Museum
Poros spindel akan memutar benda kerja melalui piringan pembawa sehingga memutar roda gigi pada poros spindel. Melalui roda gigi penghubung, putaran akan disampaikan ke roda gigi poros ulir. Oleh klem berulir, putaran poros ulir tersebut diubah menjadi gerak translasi pada eretan yang membawa pahat. Akibatnya pada benda kerja akan terjadi sayatan yang berbentuk ulir.

[sunting] Bagian-bagian mesin bubut

Mesin bubut terdiri dari meja dan kepala tetap. Di dalam kepala tetap terdapat roda-roda gigi transmisi penukar putaran yang akan memutar poros spindel. Poros spindel akan menmutar benda kerja melalui cekal. Eretan utama akan bergerak sepanjang meja sambil membawa eretan lintang dan eretan atas dan dudukan pahat. Sumber utama dari semua gerakkan tersebut berasal dari motor listrik untuk memutar pulley melalui sabuk.